Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Christopher M. Beaudry, ${ }^{\text {a* }}$ Jenny Pehl ${ }^{\text {b }}$ and Karen M. Wovkulich ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, University of California, Berkeley, CA 94720, USA, and
${ }^{\text {b }}$ Department of Earth and Planetary Science, University of California, Berkeley, CA 94720, USA

Correspondence e-mail:
beaudry@uclink.berkeley.edu

Key indicators

Single-crystal X-ray study
$T=148 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.044$
$w R$ factor $=0.054$
Data-to-parameter ratio $=8.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

(9-Anthrylmethyl)trimethylammonium chloride monohydrate

The title compound, $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}^{+} \cdot \mathrm{Cl}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$, contains a tetraalkylammonium chloride functionality bound to an anthryl moiety. There are two formula units in the asymmetric unit of the crystal structure, with a dihedral angle of $22.55(1)^{\circ}$ between the anthryl planes.

Comment

The behavior of anthracene and its derivatives plays a large role in many areas of chemistry including nanoscience (Zhang et al., 2003), organometallic chemistry (Carano et al., 2001), asymmetric organic synthesis (Corey et al., 1997), and biochemical probes (Ihmels et al., 2000; Becker \& Norden, 2000). The title compound, (I), has been synthesized from the substitution reaction of trimethylamine and 9-(chloromethyl)anthracene (Takagi et al., 1983) and recrystallized from acetonitrile.

(I)

The compound crystallizes with two cations, two anions, and two water molecules in the asymmetric unit. The cationic N atoms have tetrahedral geometry and form ion pairs with the chloride counter-ions. The $\mathrm{N} \cdots \mathrm{Cl}$ distances $[\mathrm{N} 1 \cdots \mathrm{Cl} 1=$ 3.99 (1) \AA and $\mathrm{N} 2 \cdots \mathrm{Cl} 2=4.03$ (1) \AA] are consistent with reported values in similar compounds (for a recent example, see Corey et al., 1997). Each chloride ion is hydrogen bonded to two water molecules, one in the asymmetric unit and one symmetry-related water molecule, with distances $\mathrm{Cl} 1 \cdots \mathrm{O} 1=$ 3.190 (5) $\AA, \mathrm{Cl} 1 \cdots \mathrm{O}^{\prime}=3.178$ (6) $\AA, \mathrm{Cl} 2 \cdots \mathrm{O} 2=3.191$ (5) \AA and $\mathrm{Cl} 2 \cdots \mathrm{O} 2^{\prime \prime}=3.158$ (4) \AA.

The closest contact between the two anthryl moieties within the asymmetric unit is C3..C29, 3.427 (8) \AA. The dihedral angle between the anthracene planes is $22.55(1)^{\circ}$, indicative of little or no π-stacking. A similar anthracene derivative has been reported (Le Magueres et al., 2000). This previously reported structure exhibits a dihedral angle between layers $\left(23^{\circ}\right)$ that is similar to that observed here between cations.

Experimental

The synthesis of (I) has been described in the literature (Takagi et al., 1983). Suitable crystals were obtained by slow evaporation of a saturated solution of (I) in wet acetonitrile.

Received 24 April 2003 Accepted 21 May 2003 Online 31 May 2003

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}^{+} \cdot \mathrm{Cl}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=303.83$
Monoclinic, $P 2_{1}$
$a=8.1368(6) \AA$
$b=10.2645(8) \AA$
$c=19.351(2) \AA$
$\beta=92.088(1) \AA$
$V=1)^{\circ}$
$Z=4$

Data collection

SMART 1K CCD diffractometer

ω scans

Absorption correction: multi-scan
(Blessing, 1995)
$T_{\text {min }}=0.80, T_{\text {max }}=0.97$
7199 measured reflections
4282 independent reflections

Refinement

Refinement on F
$R=0.044$
$w R=0.054$
$S=1.54$
3143 reflections
378 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
D_{x}=1.249 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 3212 reflections
$\theta=2.5-24.3^{\circ}$
$\mu=0.24 \mathrm{~mm}^{-1}$
$T=148.2 \mathrm{~K}$
Tablet, yellow
$0.23 \times 0.15 \times 0.12 \mathrm{~mm}$

3143 reflections with $F^{2}>3 \sigma\left(F^{2}\right)$
$R_{\text {int }}=0.057$
$\theta_{\text {max }}=24.7^{\circ}$
$h=-9 \rightarrow 8$
$k=-11 \rightarrow 10$
$l=-22 \rightarrow 22$
$(\Delta / \sigma)_{\max }=0.007$
$\Delta \rho_{\max }=0.70 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.26 \mathrm{e}^{-3}$
Absolute structure: Flack (1983),
4282 Friedel pairs
Flack parameter $=0.18(8)$

Table 1

Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right)$.

N1-C15	$1.539(6)$	$\mathrm{N} 2-\mathrm{C} 33$	$1.535(6)$
$\mathrm{N} 1-\mathrm{C} 16$	$1.488(6)$	$\mathrm{N} 2-\mathrm{C} 34$	$1.492(7)$
$\mathrm{N} 1-\mathrm{C} 17$	$1.495(6)$	$\mathrm{N} 2-\mathrm{C} 35$	$1.503(6)$
$\mathrm{N} 1-\mathrm{C} 18$	$1.503(6)$	$\mathrm{N} 2-\mathrm{C} 36$	$1.490(7)$
C15-N1-C16	$113.4(3)$	$\mathrm{C} 33-\mathrm{N} 2-\mathrm{C} 35$	$107.5(4)$
$\mathrm{C} 15-\mathrm{N} 1-\mathrm{C} 17$	$107.6(3)$	$\mathrm{C} 33-\mathrm{N} 2-\mathrm{C} 36$	$112.7(4)$
C15-N1-C18	$109.8(4)$	$\mathrm{C} 34-\mathrm{N} 2-\mathrm{C} 35$	$108.7(4)$
C16-N1-C17	$109.0(4)$	$\mathrm{C} 34-\mathrm{N} 2-\mathrm{C} 36$	$108.2(4)$
C16-N1-C18	$108.5(4)$	$\mathrm{C} 35-\mathrm{N} 2-\mathrm{C} 36$	$108.7(4)$
C17-N1-C18	$108.4(4)$	$\mathrm{N} 1-\mathrm{C} 15-\mathrm{C} 1$	$114.7(3)$
C33-N2-C34	$110.9(4)$	$\mathrm{N} 2-\mathrm{C} 33-\mathrm{C} 19$	$116.3(4)$

Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H43 $\cdots \mathrm{Cl} 1$	$0.83(6)$	$2.44(6)$	$3.190(5)$	$150(8)$
O1-H44 $\cdots \mathrm{Cl}^{\mathrm{i}}$	$1.05(6)$	$2.25(6)$	$3.185(5)$	$148(4)$
O2-H41 $\mathrm{Cl}^{\mathrm{ii}}$	$1.10(5)$	$2.10(5)$	$3.159(4)$	$163(4)$
O2-H42 $\cdots \mathrm{Cl} 2$	$0.89(5)$	$2.33(5)$	$3.191(5)$	$165(4)$

Symmetry codes: (i) $-2-x, \frac{1}{2}+y,-z$; (ii) $-1-x, y-\frac{1}{2},-1-z$.
The water H atoms were located in a difference Fourier map and their postitions were refined. All other H atoms were calculated geometrically and not refined. Assignment of the correct enantio-

Figure 1
The asymmetric unit of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
morph was accomplished by comparison of the intensities of Friedel pairs of reflections. The correct enantiomorph is shown in Fig. 1.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: TEXSAN; molecular graphics: TEXSAN; software used to prepare material for publication: TEXSAN.

The authors acknowledge Bryan E. Tiedemann for the preparation of (I) for analysis. We also thank Dr Frederick J. Hollander and Dr Allen G. Oliver for assistance with operation of the diffractometer and insightful discussions.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Becker, H.-C. \& Norden, B. (2000). J. Am. Chem. Soc. 122, 8344-8349.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Bruker (1999). SMART. Version 5.052d. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2002). SAINT. Version 6.36a. Bruker AXS Inc., Madison, Wisconsin, USA.
Carano, M., Careri, M., Cicogna, F., D’Ambra, I., Houben, J. L., Ingrosso, G., Marcaccio, M., Paolucci, F., Pinzino, C. \& Roffia, S. (2001). Organometallics, 20, 3478-3490.
Corey, E. J., Xu, F. \& Noe, M. C. (1997). J. Am. Chem. Soc. 119, 12414-12415.
Ihmels, H., Meiswinkel, A. \& Mohrschladt, C. J. (2000). Org. Lett. 2, 28652867.

Le Magueres, P., Hubig, S. M., Lindeman, S. V., Veya, P. \& Kochi, J. K. (2000).
J. Am. Chem. Soc. 122, 10073-10082.

Molecular Structure Corporation (1992). TEXSAN. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Takagi, M., Hirabe, T., Nojima, M. \& Kusabayashi, S. (1983). J. Chem. Soc. Perkin Trans. I, pp. 1311-1314.
Zhang, J., Lee, J.-K., Wu, Y. \& Murray, R. W. (2003). Nano Lett. 3, 403-407.

